1 Slide pst_vgrf 0115 — PIA Data Handling

PIA expects large volumes of data (terabytes, petabytes, exabytes and be-
yond) as a matter of course. The entire design of the CORBA-served imple-
mentation was predicated upon this realization, so much so that the topic
is generally not even mentioned. Because of this presumption, every kind of
object with which PIA is built is based on a highly-extensible, distributed,
data handling infrastructure.

To begin this process, PIA adopts an extremely accommodating standard
for the identification of individual objects. This identification consists of

1. The IP address of the creating machine (which is coded to support IP
V6 addresses when those come into widespread use),

2. The process identifier of the serving program within the machine,

3. The time of object creation (expressed as 64-bit count of seconds since
midnight, January 1st, 1970 in univeral, coordinated time),

4. A 64-bit count unique within the context of the serving program, and

5. The type of the created object.

All of this identification combines to create what is, in effect, a very generous
“virtual address space” for PIA objects. In simple terms, the PIA object
identification space would allow every machine on the (eventual Vesion 6)
Internet to create 16 billion billion objects of the same kind every second for
the next 500 billion years before an object identification was ever duplicated.

Obviously, no single server or cluster of servers could reasonably expect
to serve so many objects, or even a tiny fraction of such an object space,
at one time. Because of this, the PIA infrastructure defines the concept
of an active object — that is, an object actually doing something useful at
the present time — as opposed to an inactive object. Active objects are
served while inactive objects are identified, deactivated, and their internal
state stored to disk (or other) storage, a process called etheralization in
CORBA parlance. This unburdens any individual server by requiring it to
instantiate only those objects presently doing something. Past PIA prototype
experience has suggested that this strategy will be quite effective in reducing
the difficulties associated with large volumes of data.

The amount of data stored in any given object is, of course, a matter
left to the kind of the object. Some objects may simply be organizational
in nature, storing only references to other objects, while others may contain
large amounts of data, for instance entire geographical survey maps and the
like. The key consideration here, though, is one of overhead costs balanced
against ease of service. Objects having only a very small amount of useful
information will, inevitably, pay a considerable overhead cost in infrastruc-
tural information to contain their few bytes. On larger objects, beginning
perhaps in the range of tens of kilobytes, that overhead will begin to shrink
to acceptable levels. Very large objects, on the order of perhaps ten or one
hundred megabytes, will of course incur no perceptible overhead costs; how-
ever, on smaller machines such objects may become cumbersome to handle,
requiring for example the machine to find one hundred contiguous megabytes
of memory space in which to place the instantiated object.

To further ease the difficulties of extreme data volumes, the CORBA-
served implementation of PIA has been designed from the beginning to be
an inherently distributed system. Any given PIA application or information
resource has the option of being served not by just a single machine, but by a
cluster of machines cooperating as a unified whole. While not yet completely
implemented, basic infrastructural “hooks” have been put in place that will
eventually allow any given object to be served by several members of such
a cluster. This will not only increase data availability in the event that
members of a cluster must be paused for maintenance or other purposes, but
is also planned to be a part of load-leveling strategies that attempt to evenly
distribute the current burdens over the members of the cluster.

Finally, PTA supports a diverse set of mechanisms for storing the persis-
tent state of inactive objects. A server, or a member of a server cluster, is
of course expected to have access to a local storage server or storage server
farm for this purpose. Rotation among multiple members of a storage farm is
an implicit part of PIA’s utilization of such a facility. Additionally, PIA can
explicitly store persistent information to multiple locations so that, should
a particular storage server fail, the desired information can still be obtained
from a backup source. Also, the PIA storage infrastructure can utilize the fa-
cilities of CORBA to store persistent object states to remote storage servers
reachable through the Internet. Finally, this remote storage server mecha-
nism can be used to allow a client to store proprietary information only on
his own storage servers even when he is using the PIA-served information
processing resources of other parties.

2 Slide pst_vgrf 0116 — PIA Speed of Data
Access

When dealing in such huge data volumes as PIA anticipates, no system can
reasonably expect to be characterized as “fast” in the sense that most people
understand that term in the context of computing; however, PIA applies
tools that are expected to allow expeditious access to such volumes of data.

The first requirement of expeditious data access is that the data must be
sorted in some manner so that a search for a desired item can be directed
toward that item. Exhaustive searches, in which every item is picked up
and examined for the desired characteristic, will never be efficient by any
standard and, when extended to the exa-item (that is 2 to the 60th power or
approximately a billion billion items) range, will become truly exhausting.

In a great deal of modern programming the sorting method of choice is
the hash table because of the hash table’s order I search performance. It
must be remembered, though, that this search performance is based upon
the hash table’s size being some modest fraction of n, the sorted item count.
Frequently, implementors of hash table solutions go to the additional effort of
allowing the hash table to dynamically re-size itself as the number of sorted
items changes. Given the speed of the hash table, the size and additional
complication of dynamic re-sizing are equitable trade-offs.

The hash table was an untenable choice for PTA, though, given the funda-
mental presumptions of data volume. To sort a billion billion items effectively
would require a hash table of perhaps 10 or 100 million billion entries. Cre-
ating a hash table so large is simply impractical and the cost of re-sizing such
a table as data volume changes is nearly unthinkable.

As a result of the impracticality of pursuing hash-table technology to
the desired level, PIA settled upon the balanced, binary tree as its primary
sorting mechanism. The balanced, binary tree provides a reliable, scalable
order log n search performance. This means that a search for a particular
item out of an exa-item tree will require about 60 key comparisons. (To
obtain similar performance, a hash table would have to have about ten million
billion entries.)

Because the PIA balanced, binary tree sorting system is built upon PIA’s
distributed, active/inactive object infrastructure, the burden of serving an
exa-item tree can be spread over a cluster (indeed, most probably a large
cluster) of server machines and storage farms. This requires no special in-

vokations or incantations, but merely falls out of the nearly unavoidable act
of building with the tools supplied by PIA.

There is another aspect, though, to the speed of data access: the speed
at which the information of a particular object can be obtained when that
object has been deactivated and its state stored on some secondary storage
device. Since file systems typically resort to simple linear searches to find a
file of a particular name, simply dumping all the billion billion files holding
the internal states of a billion billion inactive objects into a single directory
is untenable — it would result in an average search of one-half billion billion
file names to find any particular file.

Again, PIA resorts to a tree structure to reduce the magnitude of this
problem. While a matter of server configuration, typically a 16-way direc-
tory tree structure with a depth appropriate to the anticipated file load is
configured. For example, a 16-way directory tree 15 layers deep can accom-
modate 16 billion billion files with an average lookup of only 128 filename
comparisons (an average of 8 comparisons for each of the 15 directory layers
plus a final 8 in the file-containing layer) to locate any particular file.

Now we can consider the composite speed of these two systems. Con-
sider a PIA-implemented tree sorting information for a billion billion items.
Suppose that all the objects of that tree are initially deactivated and that
the files containing the internal states of those objects exist within a PIA
directory structure configured to handle the 16 billion billion files discussed
above. How long does it take to identify one particular item for which we
have the sorting key? To begin with, we will have to examine, and therefore
instantiate, an average of approximately 60 different objects to perform the
necessary key comparison in order to navigate across the tree to the desired
object. In order to instantiate each of those objects, we will have to find
their associated state files from among the 16 billion billion files in the stor-
age server, a process that takes on average 128 file name comparisons. So,
overall, we will have to do approximately 7,680 file name operations (60 ob-
jects times 128 file name comparisons for each object) to locate the desired
data.

The question of access speed now becomes one of determining how fast
we can perform the 7,680 file name comparison and the less-significant 60
file open operations. This, of course, depends on many factors: how busy is
the storage server, how fast is the connection between the storage server and
the object-serving machine, so on and so forth. Let us just grab a number
out of the air: let us suppose that we can perform a file name comparison

4

in about 10 milliseconds. (This is about the speed at which a modern disk
drive can move its heads and about two orders of magnitude greater than
the rotational latency of such a disk drive.) At this speed, we can estimate
the time to do our 7,680 file name comparison operations as being about 77
seconds — about a minute and one quarter.

Waiting something over a minute for the piece of information you want
to come up may not seem like a staggering performance at first; it is diffcult
to generate a real conceptualization of what finding one particular piece
out of a billion billion items really means. Consider this analogy, though:
suppose that the budget of the United States is one trillion dollars — that’s
$1,000,000,000,000 — per year and is held flat at that value for the next
million years. Now suppose that all that money is printed up in one dollar
bills and stacked around you. That would be a cube of dollar bills a little
less than 8 miles on each side; about 500 cubic miles of dollar bills in all; it
would be a cube that would pretty much cover downtown Cleveland, Ohio,
and reach up to where the trans-continetal airliners fly. Let us suppose that
as you stacked up all these dollar bills, you took notes or sorted them by
serial number somehow. How long do you suppose it will take you to find
a particular one dollar bill, by serial number, out of all those mountains of
money? A little over a minute, perhaps? That is what it means for PIA to
find one particular data item out of a billion billion such items in a little over
a minute.

3 Slide pst_vgrf_ 0117 — Impact of Self-Revealing
Semantic Infusion Technology

Most traditional database tools rely upon a record structure technology in
which each of the fields of any given record are relatively fixed. The content
of each such field is usually specified at the time the database is designed
and consumers of that database must generally be built with a knowledge of
that specification. This makes the problem of consuming information from
different database designs more difficult because the consumer must be built
with knowledge of the specification applicable to each database to be utilized.

A further burden of flexibility is placed upon the consumer of multi-
ple database applications in that it must track the source of each obtained
record so as to know what additional information might exist in that record
as opposed to a record obtained from another source. For example, some
personnel databases may contain Social Security Numbers while others may
not. A consuming application spanning such different databases must be
aware which will provide such information and which will not so as to pro-
vide appropriate protections when the information is available (since records
are generally read as a whole and coming into possession of the number is
unavoidable), and to avoid inappropriate operations when it is not.

PIA is not built upon the principals of fixity and fore-knowledge, but is
instead based upon the technology of self-revelation. The kind of information
available in any given application or information resource and, indeed, in any
particular configuration of that application or resource, must be discovered
by the consumer as it is found and need not be known in advance. While
this does lead to some additional complexity on the part of the consuming
application, it is a complexity universally applicable to all encountered ap-
plications. Inquiry can be made of each information source as its found as
to the kinds of information it offers. If the desired kinds do exist, then a
search can be made for “records” having the desired values. There need be
no concern for the record format for there is no record format: only a set of
discrete items of information grouped together into a whole. There is also no
concern for what other information might be present: if it is not needed, it
is simply not accessed; if it is needed, it can be searched for and discovered
by its kind.

Algorithms that wish to apply themselves to found “records” of informa-
tion have the facilities through the technology of self-revelation to determine

whether or not the conditions for their operation do, in fact, exist. For ex-
ample, an application that must have a Social Security Number for use as a
taxpayer identification can determine whether or not that item of informa-
tion exists in the presented record. The algorithm need not be built with
fore-knowledge as to the specific record formats it can successfully operate
on, but instead examines each record as operation upon it is proposed. The
seamless consumption of information is furthered.

Furthering these capabilities is PIA’s use of semantic infusion through
class derivation: information “knows” about itself and is, in a small sense,
self-aware as well as self-revealing. For example, the encapsulated financial
value of a transaction knows in what units of currency it was made — dollars,
yen, pounds sterling — and, depending upon the situation, it may know the
exchange rates in effect at the time of the transaction, or it may be able
of its own volition to obtain the current exchange rates. Such an item of
information might even be encoded with a knowledge of present value analysis
so that even though it was a payment made then, it might be willing to
tell its consumer what that is worth now. The effect is that consumers of
information are further unburdened; they do not have to know that records
from this database record payments made in dollars while records from that
database record those payments in yen.

4 Slide pst_vgrf 0118 — Areas of Anticipated
Improvement

PIA was originally conceived not as a database technology, but as a technol-
ogy for combining technical applications into an integrated, functional whole
for the complex, multi-fidelity, multi-disciplinary analysis of systems. As
such, a number of inital design choices were based upon presumptions not
entirely appropriate to extreme database applications.

One such presumption was that, while iterations upon sets were con-
templated, those sets were considered to be both manageable in size and
inherently dynamic in nature. These expectations gave rise to the design
of the position iterator which, at present, encapsulates the entirety of a set
iteration into a single iterator instance.

The difficulty with the present positional iterator is that it will become
unmanagably large as the set to be iterated over approaches a practical in-
finity. The iterator instance is coded to hold a reference to every member of
the iterative set and that accumulated set of references in a single instance
may simply burst the capacities of a single server of that instance.

To alleviate this difficulty with the size of a single iterator, it is expected
that an implicitly-segmented iterator scheme can be devised within the pre-
senting framework. When the number of references added to the apparent
iterator instance exceeds some threshold, that instance will create additional
iterator instances and segment the whole of the iteration across the col-
lection of implicitly-created individuals, while still acting as the apparent
central focus of the iteration. This will allow PIA’s inherent technologies of
distribution to be brought into play.

A possible advantage of implicit segmentation is foreseen: it may be
possible to apply multiple threads of execution to such segmented iteration,
thus bringing additional processing power to bear upon the processing of
a near-infinite set under traversal. This presumes the applicability of such
concurrent processing techniques; a cumulative algorithm may not be able
to use such features conveniently.

Refinements may also be introduced to the set iteration support provided
by some PIA information structures. Currently, set iteration necessarily in-
volves all the members of the information structure. It would certainly be
possible to add certain fixed forms limiting this set to members of interest.
For example, an iterative initialization might select only those elements hav-

ing a key value greater than one given value, A, and less than another given
value, B. More flexible, adaptive forms might also be devised.

Another fundamental presumption of set iteration previously mentioned
was that sets were inherently dynamic; that is, that the members of the set
could and would be changing while other processes were traversing that set.
Because of this presumption, the iterator instance is connected to the set
on which it is iterating and is informed of those changes. Moreover, this
presumption disallowed the implementation of more traditional methods of
literal set traversal; that is, traditional functions in the manner of GetNext
were not implemented because of the inherent unreliability in the face of a
dynamically-changing set and their limited ability to inform an iterating pro-
cess that the set had, in fact, changed during the iteration. Such functions,
though, are not in the least difficult to implement and, given an environment
in which inherently static sets may be more frequently encountered, may well
be worthy of implementation at this later time.

5 Slide pst_vgrf 0119 — Expected Growth in
the CORBA-Served Implementation

The original C++ prototype implementation of PTA was just that: a proto-
type designed to demonstrate the feasibility and mechanisms of basic con-
cepts upon which PTA was to be built, those being principally the tech-
nologies of self-revelation and semantic infusion through class derivation. It
has always been expected that the migration of PIA to a CORBA-served
form would offer the opportunity to greatly expand on these foundational
concepts.

One of those expected conceptual expansions is the application of seman-
tic infusion through class derivation to offer various kinds of applications.
The exact hierarchy of such a derivational tree is not entirely settled as yet;
however, it would seem clear that the concept of a “database” (or informa-
tion resource) application whose primary purpose is the offering up a volume
of information for inspection would be one of those natural kinds of applica-
tions.

One of the key elements of the semantic infusion technology is the abil-
ity to add functionality appropriate to the semantics of the encapsulated
kind. For a database application support for various standard query mech-
anisms, for example Structured Query Language (SQL), would be a natu-
ral functional addition. To support PIA’s self-revealing nature, other query
functionality to reveal the kind of information actually contained by a given
database application might also be added.

One key distinction that may result in different kinds of database appli-
cations is the location of the actual data. One kind of database application
may offer a portal to data managed by a traditional database tool while an-
other kind of database may contain the data itself. Both kinds of database
application have their advantages and disadvantages.

The first database application kind, acting as a portal to data managed
by a traditional database tool, has the disadvantage that PIA’s support for
information extending to a practical infinity is set aside. While all the mech-
anisms for such volume are still in place in the PIA application, the limit on
data volume is set by the database tool being exposed by the PIA portal.
The advantage of the portal application, though, is that the semantics of
the parameter configuration tree are relatively natural: the tree can follow
the path of queries pursued by the consumer of the database application,

10

producing an auditable record of what was searched for, what results were
returned, what paths of investigation were not pursued, and the like, much
as the PIA application conceptual design intended.

The second database application kind, in which the PIA application sup-
plants traditional database tools and becomes the holder of the data, again
has the advantage that PIA’s support for information volume extending to a
practical infinity can now be utilized — there is no traditional tool imposing
any limitation. While perhaps not so much a disadvantage as an uncertainty,
the use of the PIA parameter configuration tree in such an application is now
less clear. In traditional database tools, all records are peers; there is no hier-
archy. On the other hand, the n-ary tree of the PIA parameter configuration
tree has a definite parent/offspring hierarchy. Some database applications
might find the parameter configuration tree hierarchy very natural to the
structure of the data, some might not.

A further consideration of the parameter configuration tree issue in the
second database kind is that some applications might find the n-ary tree pre-
sumption unnatural to their kind. Specifically, geneological databases would
fit much more naturally into a parameter configuration graph (in which each
node of the graph represented a specific person) than into the restrictive
n-ary specialization of this tree. Since the parameter configuration tree is
constructed using an interface that is, in fact, a directed graph node inter-
face, it might be expected that a further derivation of the second kind of
database application, designated a geneological database application, might
be defined in which the n-ary tree restriction of the parameter configura-
tion tree is turned off, with the result that parameter configurations become
a full-fledged graph. Exactly what import this has for other PIA-wrapped
consumers of information is unclear; however, the technology of PIA self-
revelation allows such consumers to inquire, determine that parameter con-
figurations are in a full, directed-graph form, and act appropriately.

11

